Multifocal System for Real Time Tracking of Dynamic Facial and Body Features (MULTIFACE) PN-II-RU-TE-2014-4-1746

Project manager: Radu Dănescu Computer Science Department, UTCN

© DMCDI

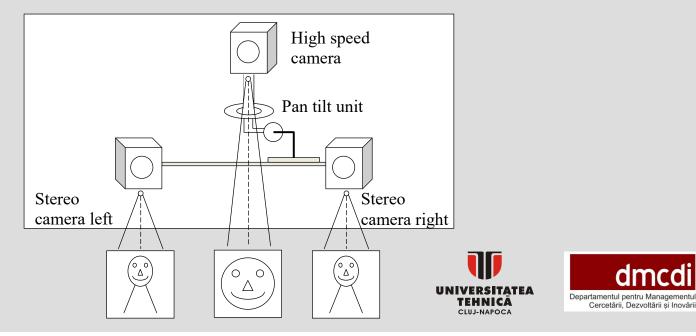
Team

Radu Danescu Assoc. Professor, project manager

Florin Oniga Assoc. Professor

Diana Borza PhD Student

Razvan Itu PhD Student


Mircea Muresan MSc Student

Main objective

 design <u>original sensorial systems</u>, <u>models and detection</u> <u>algorithms</u>, for <u>tracking the head and facial features</u>, for indoor and outdoor environments <u>without constraints on</u> <u>the user behavior</u>

Proposed Solution Outline

© DMCDI

Objectives - Activities – Milestones (1)

Year	Objectives	Activities	Deliverables
2016	O1. Setup of the multifocal sensorial	A1.1. Setup of the multifocal sensorial system (O1)	
	system O2. Development of an efficient sensorial system calibration methodology	 A1.2. Development of a preliminary calibration methodology for the multifocal sensorial system (O2) A2.1. Development of an efficient calibration technique, requiring minimum user input (O2) 	algorithms for head
	O3. Stereovision for head and face tracking	A2.2. Improving the stereovision algorithms for accurate measurement of the human face (O3)	
	O4. Head geometry and pose modeling and tracking using stereo information	 A1.4. Design of models for head geometry and position, and for facial features (O4) A2.3. Design and implementation of algorithms for head geometry and pose tracking (O4) 	original models, scientific papers manuscripts, patent submission, stage report.
	O7. Dissemination	A2.5. Preliminary results dissemination (O7)	

© DMCDI

Objectives - Activities - Milestones (2)

Year	Objectives	Activities	Deliverables	
2017	O4. Head geometry and pose modeling and tracking using stereo information	A3.1. Testing and validation of head and facial features tracking algorithms (O5)	Optimized	
	O5. Detection and tracking of facial features	A2.4. Design and implementation of algorithms for facial features recognition and tracking (O5)A3.1. Testing and validation of head and facial features tracking algorithms (O5)	algorithms for head and facial features tracking,	
	O6. Demonstrator applications	A3.2. Development of a demonstrator application (O6)		
	O7. Dissemination	A1.5. Patent application (O7) A3.3. Dissemination of final results (O7)		

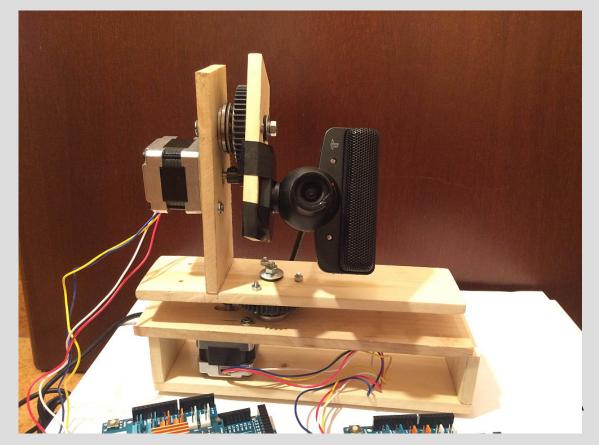
Challenges

- building of the multifocal image acquisition system
- calibration of the three cameras and the pan/tilt unit in a common world reference frame
- design of an eye tracker that can cope with temporal eye occlusions and different head attitudes
- design accurate motion detection and tracking algorithms for micro-expression detection
- design micro-expression detection algorithms that allow the users to move their heads freely or where other facial movements are present

© DMCE

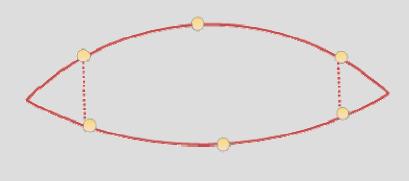
Results (1)

- Building the multifocal imaging system
 - Camera pair for stereovision: 2x MANTA G419B Ethernet camera
 - Development of a fast stereovision algorithm for real-time scene reconstruction without the need of a GPU or a hardware acceleration board
 - Purchasing of a color high speed camera for face observation and fast movement detection of facial features (in progress)



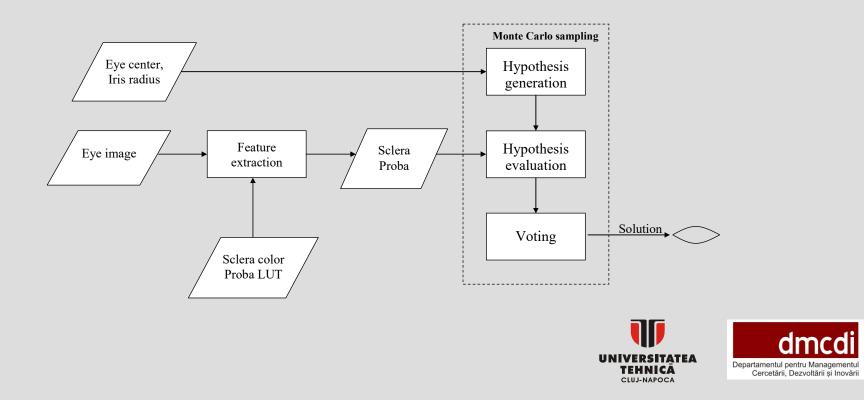
© DMCDI

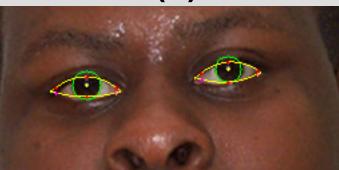
Results (2)


• Building the pan-tilt rig (to hold the high speed camera)

Results (3)

- designed and implemented a <u>real time eye detector</u> based on Fast Radial Symmetry Transform (FRST)
- <u>fast iris segmentation</u> algorithm
- designed a <u>new model</u> for representing the <u>eye</u> <u>shape</u> using 6 control points and 2 parabolas




© DMCDI

Results (4)

 an <u>original</u> Monte Carlo <u>method for extracting the eye</u> <u>shape</u> using the proposed model

Results (5)

Center for Vital Longevity Face Database

(310 images

- accuracy

88.7 %)

Next steps

- Finalizing the setup of the imaging system
- Design and implementation of a body and head tracker based on stereovision
- Extraction of static and dynamic facial features parameters (eye movement, microexpressions, etc)
- Development of applications based on the observed features: attention monitoring, person identification, etc.

© DMCDI

Contact

Web http://cv.utcluj.ro/multiface/

E-mail: radu.danescu@cs.utcluj.ro

Telephone: 0264 401 457

